Ex 15.1 Class 9 Maths Question 4.

Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes.

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.
Solution:
Total number of times the three coins are tossed $=200$
Number of outcomes in which 2 heads coming up $=72$
\therefore Probability of 2 heads coming up $=72 / 200$
\therefore Thus, the required probability $=9 / 25$

Question 5.
An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below.

Monthly income (in	Vehicles per family			
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Above 2
Less than 7000	10	160	25	0
$7000-10000$	0	305	27	2
$10000-13000$	1	535	29	1
$13000-16000$	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen. Find the probability that the family chosen is
(i) earning ₹ 10000-13000 per month and owning exactly 2 vehicles.
(ii) earning ₹ 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than ₹ 7000 per month and does not own any vehicle.
(iv) earning ₹ $13000-16000$ per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.

Solution:
Here, total number of families $=2400$
(i) \because Number of families earning Rs. 10000 - Rs. 13000 per month and owning exactly 2 vehicles $=29$
\therefore Probability of a family earning Rs. 10000 - Rs. 13000 per month and owning exactly 2 vehicles =

29/2400

(ii) '. Number of families earning Rs. 16000 or more per month and owning exactly 1 vehicle = 579
\therefore Probability of a family earning Rs. 16000 or more per month and owning exactly 1 vehicle $=579 / 2400$
(iii) '.' Number of families earning less than Rs. 7000 per month and do not own any vehicle = 10
\therefore Probability of a family earning less than Rs. 7000 per month and does not own any vehicle =

10/2400
$=5 / 1200=1 / 240$
(iv) \because Number of families earning Rs. 13000 - Rs. 16000 per month and owning more than 2 vehicles $=25$
\therefore Probability of a family earning Rs. 13000 - Rs. 16000 per month and owning more than 2 vehicles =
25/2400=96
(v) \because Number of families owning not more than 1 vehicle
$=$ [Number of families having no vehicle] + [Number of families having only 1 vehicle]
$=[10+1+2+1]+[160+305+535+469+579]=14+2048=$ 2062
\therefore Probability of a family owning not more than 1 vehicle $=$
$2062 / 2400=1031 / 1200$

Question 6.
A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows $0-20,20-30, \ldots, 60-70,70-100$. Then she formed the following table

Marks	Number of students
$0-20$	7
$20-30$	10
$30-40$	10
$40-50$	20
$50-60$	20
$60-70$	15
70 -above	8
Total	$\mathbf{9 0}$

(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Solution:

Total number of students $=\mathbf{9 0}$
(i) From the given table, number of students
who obtained less than 20% marks $=7$
Probability of a student obtaining less than
20% marks $=7 / 90$
(ii) From the given table, number of students
who obtained marks 60 or above $=$ [Number of
students in class-interval 60-70] + [Number of students in the class interval 70 - above]
$=15+8=23$
\therefore Probability of a student who obtained 23

marks 60 or above $=23 / 90$

Question 7.
To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table

Opinion	Number of students
Like	135
Dislike	65

Find the probability that a student chosen at random
(i) likes statistics,
(ii) does not like it.

Solution:

Total number of students whose opinion is obtained $=200$
(i) \because Number of students who like statistics = 135
\therefore Probability of selecting a student who likes statistics $=$ 135/200=27/40
(ii) \because Number of students who do not like statistics $=65$
\therefore Probability of selecting a student who does not like statistics $=$ 65/200=13/40

Question 8.

The distance (in km) of 40 engineers from their residence to their place of work were found as follows.

5	3	10	20	25	11	13	7	12	31
19	10	12	17	18	11	32	17	16	2
7	9	7	8	3	5	12	15	18	3
12	14	2	9	6	15	15	7	6	12

What is the empirical probability that an engineer lives
(i) less than 7 km from her place of work?
(ii) more than or equal to 7 km from her place of work?
(iii) within 12km from her place of work?

Solution:

Here, total number of engineers $=40$
(i) ':' Number of engineers who are living less than 7 km from their work place $=9$
\therefore Probability of an engineer who is living less than 7 km from her place of work = 9/40
(ii) '.' Number of engineers living at a distance more than or equal to 7 km from their work place $=31$
\therefore Probability of an engineer who is living at distance more than or equal to 7 km from her place of work $=31 / 40$
(iii) '.' The number of engineers living within 12km from their work place $=0$
\therefore Probability of an engineer who is living within 12 km from her place of work $=0 / 40=0$

